Total No. of Questions: 8]	SEAT No. :
P260	[Total No. of Pages : 3
	[6003]-337
	T.E. (Civil)
WASTEW	ATER ENGINEERING

Time: 2½ Hours] [Max. Marks: 70

(2019 Pattern) (Semester-II) (301012)

Instructions to the candidates:

- 1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
- 2) Figures to the right indicate full marks.
- 3) Draw neat figures wherever necessary.
- 4) Assume suitable data if necessary.
- 5) Use of scientific calculators is allowed
- Q1) a) Explain the importance of secondary treatment and principle of biological treatment. [6]
 - b) An average operating data for conventional activated sludge treatment plant is as follows. [6]

Sewage flow-30000 m³/d, volume of aeration tank-10500m³, influent BOD-200mg/L, effluent BOD-20 mg/L, mixed liquor suspended solids-3000 mg/l, effluent suspended solids-30 mg/L, Waste sludge suspended solids-9500mg/L, quantity of waste sludge-200m³/d. Determine

- i) Food to microorganism ratio
- ii) Sludge age
- iii) Percentage of efficiency of BOD removal
- c) Describe symptoms, causes and remedial measures of sludge bulking in activated sludge process. [6]

OR

- Q2) a) Explain the term Volumetric BOD loading, F/M Ratio, Sludge age in detail.[6]
 - b) The mixed liquor suspended solids. Concentration in aeration tank is 3000 mg/l and sludge volume after 30 minutes of settling in a 1000 ml graduated cylinder is 135 ml. Determine. [6]

P.T.O.

		ii)	Required return sludge ratio	
		iii)	Suspended solids concentration in recirculated sludge	
	c)	Describe symptoms, causes and remedial measures of foaming in activated		
		slud	ge process.	[6]
Q 3)	a)	Sum desi	nmarize the principle components and factors affecting oxidation pogn.	ond [5]
	b)	Desi	ign an oxidation pond for the following data. Raw sewage flow-10 MI	LD,
		raw	se wage BOD_5 -200mg/L, desired BOD_5 of treated effluent-20mg/L, Box	OD
			oval rate constant-0.1/d, BOD loading rate for the given latitude	
		the p	place-250kg/Ha/d, elevation of the place-550 m above MSL. Determine	
		2		[6]
		1)	Area of oxidation pond	
		ii)	Detention time required	
		iii)	Dimension of the pond	
	c)	Enu	merate principle, advantages and disadvantages of aerated lagoon	.[6]
			ORO	
Q4)	a)	Exp	lain with a neat sketch the principle of trickling filter.	[5]
	b)	A si	ngle stage trickling filter is designed for an organic loading of 100	960
		kg of BOD in raw sewage per hectare meter per day with a recirculation		
		ratio of 1.1. This trickling filter treats 1.95 MLD of raw sewage with a		
			D of 180mg/L. Use NRC formula and determine the strength of	
	,	efflu		[6]
	c)	Desc	cribe the operational problems and its control in trickling filter.	[6]
Q 5)	a)	Con	npare the aerobic and anaerobic treatment of wastewater.	[6]
	b)	Desi	ign a septic tank for 300 users. Water allowance is 120 L per head	per
		day.	Assume suitable data if required.	[6]
	c)	Desc	cribe with a neat sketch working of up-flow anaerobic sludge blan	ket
		reac	etor.	[6]
			OR O	
[600	3]-	337	2	

i)

SVI

Q6)	a)	Summarize the features and applications of up-flow anaerobic slu	dge			
		blanket.	[6]			
	b)	Design the dimensions of septic tank for small colony of 160 persons				
		provided with an assured water supply from municipal head works at				
		rate of 120 L per person per day. Assume suitable data if required. [6]				
	c)					
		sludge process.	[6]			
Q 7)	a)	Describe the governing factors in anaerobic digesters.	[5]			
	b)					
		suspended solids. Tank removes around 50% of suspended solids. Calculate				
		the quantity of sludge produce per day in bulk and weight if	[6]			
		i) Moisture content of the sludge is 98%				
	8	ii) Moisture content of the sludge is 96%				
	c)	Explain the stages of digestion in anaerobic digesters.	[6]			
		OR O				
Q 8)	a)	Indicate the major challenges in sludge management.	[5]			
	b)	The moisture content of a sludge is reduced from 95% to 80%. Find	the			
		decrease in the volume of the sludge. Explain why dewatering of sludge				
		is necessary.	[6]			
	c)	Discuss the reuse opportunities of wastewater in industrial sector.	[6]			
		Discuss the reuse opportunities of wastewater in industrial sectors.				